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ABSTRACT 

Melting points are critical to the study of material changes of state. The concept of a 
melting point is formulated here in terms of only four atoms or molecules. Computer 
implementation results in a general formula which is applied to solids which consist of a 
single atomic or molecular species. This new formula is in terms of Plan&s constant. 

The melting point of a solid is usually defined in terms of the average 
kinetic energy of a large ensemble of atoms or molecules [l]. We explore 
here a new computer-oriented model of the melting point which uses only 
four atoms or molecules. 

Consider first four identical atoms PI, P2, P3, P4, each of mass m. Let (p(r) 
be a related classical interato~c potential and let F be the interatomic 
force defined by 9. Let F be zero when r equals r *, which is called the 
equilibrium distance. Although r and r* will be given in krgstriims, all 
other quantities will be given in cgs units. 

Next set P (i = 1, 2, 3, 4) to be the vertices of a regular tetrahedron of 
edge length r *, at the respective points (xi, yj, zi), as shown in Fig. I, in 
which, for convenience, (x,, y,, z,) = (0, 0, [(r*)2 - ($r* sin 60“)2]‘/2) 
(x,, y,, z2) = (0, $r* sin 60”, 0) (x,, y3, z,) = ($r*, - $r* sin 60”, 0) 
(x,, y4, zq) = (- ir*, - ir* sin 60”, 0). 

For this arrangement, P2, P3, and P4 are in the XY plane and are 
equidistant from the origin, while PI lies on the Z axis. 

To derive a formula for the melting point of a solid, we begin by studying, 
in particular, copper. For this purpose, note first that a Lennard-Jones 
(6-12) potential for copper is [2] 

~(~)=-(~)10~‘“+(~)10~8 (erg) 

dl Calculations were performed on the CRAY X-MP/24 at the University of Texas Center for 
Nigh Performance Computing, 
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Fig. 1. 

In dynes, the force F then has magnitude P given by 

F= _ (8.388) lo-* + 
r’ 

from which it follows that r * = 2.460 A. We now apply molecular dynamics 
to the tetrahedral system Pi, PZ, P3, Pd. The initial velocities are chosen to be 
Vi = (0, 0, V,), V, = V3 = V, = 0, and we determine numerically the mini- 
mum value of V, for which Pi passes through the plane of PZ, P3, Pd. 
Intuitively, such behavior is fluid-like and should enable one to characterize 
the melting transition. The result is V, = 0.20356 X lo-” cm s-l. If ui is the 
initial speed of Pi relative to the center of mass of the system [3], so that 
ui = ZV,, then u1 = 0.15267 x lo-l5 cm s-l. We now define the melting 
point T, of copper in K by the formula 

To = C( $nu:) (3) 
in which C is a constant which is determined as follows. Since the mass of a 
copper atom is 1.0542 X 1O-22 g and its melting point is To = 1357 K, eqn. 
(3) implies 

c = 1.10453 x 1o-57 (4) 

But, to 0.03%, which is less than the error in the experimental value 1357 K, 
one finds 

c= $ x10g4 
( i 

in which h is Plan&s constant 6.6251 X 10p2’ J s. 
From the results above, we now propose that the melting point for any 

system P,, P2, P3, P4 is 

r, = ; x 10*4($zu:) 
( 1 (6) 
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TABLE 1 

Noble c u r* Mass K Melting To 

w (X1O-'6 erg) (A) (A) (x10-24g) (x10-‘5cms-‘) point (K) 
(K) 

Ne 48.1837 2.78 3.12044 33.49754 0.04763 24 24 
Ar 168.436 3.40 3.81637 66.31447 0.06292 84 82 
Kr 236.086 3.60 4.04086 139.10966 0.05251 116 119 
Xe 299.595 3.963 4.44832 217.96061 0.04872 161 161 

and proceed to examine the applicability of this formula to other atomic 
species. 

In Table 1 we have listed the parameter values for the Lennard-Jones 
potentials 

for the noble gases Ne, Ar, Kr and Xe. These potentials were derived using 
second virial coefficients [4]. Also listed are the respective masses, equi- 
librium distances r* and minimum values V, determined by molecular 
dynamics. The experimental melting points and the theoretical values de- 
termined using eqn. (6) are given in the final two columns. The agreement is 
quite good. 

We finally turn to molecular species, for which many more potentials are 
available than for atomic species. For simplicity, we will restrict attention to 
potentials of the form of eqn. (7) for which at least three different sets of 
parameter values are available. From table I-A of Hirschfelder, Curtiss and 
Bird [5], then, attention will be directed to N,, O,, CO, NO and CH,. Again 
using molecular dynamics, the appropriate tetrahedral structures and eqn. 
(6), we obtain the results listed in Table 2. In the first column, an entry 
without an asterisk is one which has been determined using the second virial 
coefficient, while one with an asterisk has been determined by means of 
viscosity. The parameter values for any particular molecule can vary quite 
extensively, as is readily observed for NO. The computational results are 
summarized as follows. 

For N,, the choice e/k = 95.05, u = 3.698 is best. The result of 63.9 K is 
in error by 0.16%. However, all the results are narrowly within the correct 
range. Indeed, for the worst case (corresponding to e/k = 79.8, u = 3.749) 
the computed result is in error by only 0.78%. For CO, the choice c/k = 110, 

(I = 3.590 is best and yields an error of 1.6%, while for CH, the choice 
r/k = 144, u = 3.796 proves best and the error is 1.2%. 

The remaining two cases 0, and NO, require special attention. Although 
for 0, the choice c/k = 88.0, u = 3.541 is better than the other three 
possibilities, it yields an error of 19.7%. We then assumed an error of 5% in 
both c/k and u and re-ran all possible resulting cases. For the 5% variations 
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TABLE 2 

Molecule e/k 

W 

Ma.sS K Melting To 

(x10-*4g) (X10-*5cms-1) point (R) 
(R) 

N2 (4 95.9 3.71 46.5028 0.06676 64 64.4 

(b) 95.05 3.698 0.06650 63.9 

(4 * 91.5 3.681 0.06645 63.8 

(4 * 79.8 3.749 0.06681 64.5 

0, (4 118.0 3.46 53.5 0.06855 54.6 78.1 

@I 117.5 3.58 0.06857 78.1 

(c) * 113.0 3.433 0.06715 74.9 

(4 * 88.0 3.541 0.05992 59.6 
CO (a) * 110.0 3.590 46.6887 0.07087 74 72.8 

(b) 100.2 3.763 0.06819 67.4 

(c) * 88.0 3.706 0.06403 59.4 

NG (a) 131.0 3.17 50.0014 0.07394 109 84.9 

(b) * 119.0 3.470 0.07105 78.4 

(c) * 91.0 3.599 0.06287 61.4 

CH, (a) 148.2 3.817 26.6319 0.1093 90.5 98.8 

tb) * 144.0 3.796 0.10525 91.6 

(c) * 137.0 3.822 0.1030 87.7 

See text for the meaning of the asterisk. 

(c/k = 83.6, u = 3.71805) there resulted V, = 0.05875 cm s-l, T’, = 57.3 K, 
which is in error also by just under 5%. This was the best of all of the results. 
A possible problem which may be apparent from this example is that the 
approximation of I: by differentiation of $ leads to an inordinate increase 
in the error in +. Unfortunately, unlike integration, differentiation can 
exhibit such a property. 

For NO, the values e/k = 131, (I = 3.17 are best, but the results are still 
quite poor. Even use of the 5% error idea which was applied to 0, yielded at 
best V, = 0.07587 cm s-l, T, = 89.4 K for c/k = 137.55, u = 3.3285. There- 
fore, either the problems inherent in differentiation are present, or the 
Lennard-Jones potential is not applicable, or eqn. (6) is no longer valid. 
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